相關(guān)產(chǎn)品推薦更多 >>
渦街氣體流量計(jì)在供熱管網(wǎng)中的應(yīng)用及效果分析
點(diǎn)擊次數(shù):1880 發(fā)布時(shí)間:2021-01-06 11:38:29
摘要:通過實(shí)際管網(wǎng)平衡改造案例,詳細(xì)闡述了靜態(tài)渦街氣體流量計(jì)調(diào)試方法,*后通過對比渦街氣體流量計(jì)調(diào)試前后管網(wǎng)不平衡率、室溫等數(shù)據(jù),得出管網(wǎng)平衡改造不僅對水力失調(diào)改善效果明顯,而且對能源節(jié)約有著明顯的效果。
1 引言
近些年來隨著供熱區(qū)域內(nèi)建筑面積的不斷增加,供熱管網(wǎng)的系統(tǒng)半徑不斷增大,在運(yùn)行期由于各種因素的影響,使得管網(wǎng)出現(xiàn)實(shí)際流量與設(shè)計(jì)流量不一致的現(xiàn)象,即出現(xiàn)了水力失調(diào)。雖然在設(shè)計(jì)初期會(huì)考慮到水力失調(diào)帶來的影響,由于水力計(jì)算步驟較為復(fù)雜,會(huì)選擇一些型號較大的設(shè)備,如加大水泵揚(yáng)程,提高水泵的運(yùn)行頻率來彌補(bǔ)系統(tǒng)水力失調(diào)。這種“大流量”的措施,放在以前的小規(guī)模系統(tǒng),舒適度要求較低、能耗要求也較低的供熱管網(wǎng)循環(huán)系統(tǒng)中,還可以用。但是現(xiàn)在來看,系統(tǒng)規(guī)模不斷擴(kuò)大,高舒適性、低耗能性等要求被提出,因此尋求新的解決水力失調(diào)的方法迫在眉睫。據(jù)不完全統(tǒng)計(jì),選用較大型號設(shè)備,會(huì)增加供熱設(shè)備的系統(tǒng)投資20%以上,同時(shí)熱能和電能也有不同程度的增加,耗熱能增加15%以上,浪費(fèi)電能30%以上。
管網(wǎng)水力失調(diào)不僅造成能源的大量浪費(fèi),而且造成了各采暖建筑物之間的室內(nèi)溫度偏差較大,冷熱不均。因此,必須采取有效措施解決供熱管網(wǎng)水力失調(diào)問題。筆者分析了某小區(qū)的供熱管網(wǎng)中存在的問題,利用加裝渦街氣體流量計(jì)方法解決管網(wǎng)水力失調(diào)的現(xiàn)象,以實(shí)現(xiàn)節(jié)能的目的。
2 小區(qū)供熱管網(wǎng)系統(tǒng)現(xiàn)狀
某小區(qū)住宅樓建設(shè)于1996年,建筑結(jié)構(gòu)為磚混建筑,建筑面積為54931m2,共30棟住宅樓。2017年繳費(fèi)739戶,總采暖面積為47141m2。換熱站位于小區(qū)中部,板式換熱機(jī)組設(shè)計(jì)換熱面積為50000m2,循環(huán)泵額定功率為30kW,流量為200m³/h,揚(yáng)程為32m。庭院管網(wǎng)共分為2個(gè)支狀供回水環(huán)路,該小區(qū)供熱管網(wǎng)見圖1所示。
管網(wǎng)平衡改造前,2017~2018 年*寒期循環(huán)泵頻率為45HZ,實(shí)測總供水量為189m³/h,供水溫度為 55.4℃,回水溫度為47.1℃;換熱站總供水壓力0.37MPa,回水壓力為 0.27MPa;采暖期電指標(biāo)為1.221kW·h/m2。管網(wǎng)近端末端部分用戶*寒期室溫實(shí)測數(shù)據(jù)詳見表1。基于以上數(shù)據(jù)可以看出,該小區(qū)庭院管網(wǎng)采用“大流量、小溫差”的供熱運(yùn)行方式,同時(shí)熱用戶室溫存在近熱遠(yuǎn)冷現(xiàn)象,管網(wǎng)處于水力失調(diào)狀態(tài),耗電指標(biāo)偏大,節(jié)能改造潛力巨大。
3 渦街氣體流量計(jì)的選用及調(diào)試方案
3.1 渦街氣體流量計(jì)的選用
該小區(qū)建造年代較早,供熱系統(tǒng)未采用熱計(jì)量,因此供熱系統(tǒng)屬于定流量系統(tǒng)。在定流量系統(tǒng)中,運(yùn)行過程流量不發(fā)生改變,因此只會(huì)出現(xiàn)靜態(tài)水力失調(diào)。只需要使用靜態(tài)渦街氣體流量計(jì)平衡系統(tǒng)阻力,達(dá)到靜態(tài)水力平衡即可。2018年夏季,我公司在小區(qū)每個(gè)樓單元前,回水干管上KPF靜態(tài)水力渦街氣體流量計(jì),共安裝88臺DN50渦街氣體流量計(jì)。為使系統(tǒng)在*大程度上達(dá)到靜態(tài)水力平衡,供熱前期即可用專用儀表進(jìn)行平衡調(diào)試。KPF靜態(tài)水力渦街氣體流量計(jì)有良好的流量調(diào)節(jié)特性及開度鎖定記憶裝置,配合使用專用智能儀表可測量單體建筑的供熱流量。該閥門可實(shí)現(xiàn)系統(tǒng)平衡后、總流量增減時(shí),各支路、各用戶的流量同比例增減,同步傳至每一個(gè)末端裝置,可有效避免流量失衡、各個(gè)環(huán)路相互干擾造成的熱量浪費(fèi)。
3.2 渦街氣體流量計(jì)調(diào)試方案
目前國內(nèi)平衡調(diào)節(jié)的主要方法有溫差法、比例法和CCR法。結(jié)合公司選擇使用KPF渦街氣體流量計(jì)的現(xiàn)狀,現(xiàn)采用KPF 綜合
調(diào)節(jié)法。該方法是計(jì)算出每棟單體建筑的理論循環(huán)流量,通過安裝KPF渦街氣體流量計(jì),利用其專用智能儀表標(biāo)定通過閥門的實(shí)際流量,調(diào)節(jié)閥門開度,使實(shí)際流量趨近于理論流量,實(shí)現(xiàn)水力工況平衡。
3.2.1 計(jì)算理論流量
考慮到該小區(qū)建造年代較早,建造圍護(hù)保溫性較差,查閱《城市熱網(wǎng)設(shè)計(jì)規(guī)范》后選用40W/m²的采暖熱指標(biāo)進(jìn)行計(jì)算。
根據(jù)公式(1)和公式(2)計(jì)算出每個(gè)單元理論設(shè)計(jì)流量。使用渦街氣體流量計(jì)專用智能儀表,通過調(diào)整渦街氣體流量計(jì)開度,使實(shí)際流量趨近于理論流量。
3.2.2 渦街氣體流量計(jì)調(diào)試
在庭院管網(wǎng)渦街氣體流量計(jì)調(diào)試中,采取“先近后遠(yuǎn)”的原則。*先利用專用智能儀表對管網(wǎng)近端渦街氣體流量計(jì)進(jìn)行流量調(diào)試,使其實(shí)際流量趨近于理論流量,這樣可以有效增大管網(wǎng)末端用戶的使用流量,防止末端流量不足的情況出現(xiàn);其次再依次進(jìn)行管網(wǎng)中端和末端渦街氣體流量計(jì)調(diào)節(jié),使整個(gè)環(huán)路水力工況達(dá)到平衡。在渦街氣體流量計(jì)調(diào)試過程中,需將每臺閥門的開度設(shè)定值、實(shí)際流量值等數(shù)據(jù)進(jìn)行記錄和整理,并撰寫渦街氣體流量計(jì)調(diào)試報(bào)告,以便為以后調(diào)試提供依據(jù)。部分渦街氣體流量計(jì)調(diào)試結(jié)果見表2所示。
4 管網(wǎng)平衡改造效果
4.1 管網(wǎng)不平衡率分析
將所有渦街氣體流量計(jì)調(diào)試后不平衡率做成圖片,如圖2所示。
圖2中橫坐標(biāo)代表渦街氣體流量計(jì)安裝單元數(shù),縱坐標(biāo)表示每個(gè)渦街氣體流量計(jì)不平衡率,當(dāng)未使用靜態(tài)水力渦街氣體流量計(jì)進(jìn)行調(diào)節(jié)前,水力不平衡率數(shù)據(jù)不集中,比較分散,*大能達(dá)到98%,從圖中還可以看出,調(diào)節(jié)前管網(wǎng)近端渦街氣體流量計(jì)不平衡率較大,而管網(wǎng)末端不平衡率均為負(fù)值,流量嚴(yán)重不足。說明調(diào)節(jié)前管網(wǎng)存在嚴(yán)重水力失調(diào)現(xiàn)象,近端流量大,遠(yuǎn)端流量不足。管網(wǎng)平衡改造后,水力不平衡率全部集中在8%以內(nèi),也就是說,整個(gè)管網(wǎng)基本處于水力平衡狀態(tài),即實(shí)際流量與理論流量相當(dāng)接近。另外從圖中可以看出,一些渦街氣體流量計(jì)不平衡率存在負(fù)值,說明該渦街氣體流量計(jì)的循環(huán)流量不足,原因可能為此閥盜用壓差不足,靜態(tài)渦街氣體流量計(jì)的加裝,無疑使得管路阻力增大了,因此必須考慮加大閥門開度。如果仍不能滿足循環(huán)流量,應(yīng)考慮該處靜態(tài)渦街氣體流量計(jì)安裝的必要性。
4.2 用戶室溫分析
我公司在該小區(qū)管網(wǎng)改造前,在不同單元不同樓層分別安裝100臺室溫采集器。渦街氣體流量計(jì)調(diào)前數(shù)據(jù)采集于2017~2018年供熱期,調(diào)后數(shù)據(jù)采集于2018~2019年供熱期。經(jīng)過兩個(gè)采暖期,共有96臺室溫采集器可以正常提供數(shù)據(jù)。數(shù)據(jù)分析結(jié)果見圖3所示。
圖3中的曲線 A和B供熱管網(wǎng)渦街氣體流量計(jì)調(diào)節(jié)前后的熱用戶室溫變化情況,橫坐標(biāo)表示室溫分布,縱坐標(biāo)表示熱用戶數(shù)量。從圖中可以看出,渦街氣體流量計(jì)調(diào)節(jié)前熱用戶室溫比較分散,既有室溫小于18℃的熱用戶,也有室溫大于24℃的熱用戶。熱用戶室溫“近熱遠(yuǎn)冷”,供熱管網(wǎng)存在水力不平衡現(xiàn)象。渦街氣體流量計(jì)調(diào)節(jié)后,有49戶用戶室溫在20℃~21℃之間,從圖中可以看出室溫分布范圍縮小,平均室溫降低,從而,不僅減少了供熱量,也大大提高了供熱品質(zhì)。一般來講,對采暖系統(tǒng),每增加 1℃平均室溫,能耗增多 5%~10%。采暖系統(tǒng)實(shí)現(xiàn)平衡后,常??梢越档推骄覝?℃~3℃。
4.3 換熱站內(nèi)數(shù)據(jù)分析
管網(wǎng)平衡改造后,2018~2019年*寒期換熱站內(nèi)供水溫度為55.4℃,回水溫度為 44.8℃,供回水溫差較上一采暖期增大2.3℃。換熱站總供水壓力0.37MPa,回水壓力為 0.25MPa,供回水壓差較上一采暖期增大0.02MPa。通過多次調(diào)試渦街氣體流量計(jì),已將循環(huán)泵頻率降至39HZ,采暖期電指標(biāo)為0.877kW·h/m²??梢姽芫W(wǎng)平衡改造后,節(jié)能效果明顯。
5 結(jié)論
通過對上述案例的分析,熟悉了靜態(tài)水力渦街氣體流量計(jì)的調(diào)試方法,通過對比平衡調(diào)試前后的不平衡率、室溫等數(shù)據(jù),得出管網(wǎng)平衡改造對改善管網(wǎng)水力失調(diào)的效果明顯,不僅節(jié)約能源,而且提高了管網(wǎng)末端熱用戶室溫,緩解了熱力公司與熱用戶之間的矛盾。
淺析使用定制款氣體渦街流量計(jì)的好處
關(guān)于氣體渦街流量計(jì)的結(jié)構(gòu)原理與解決不斷流問題
電廠氣體渦街流量計(jì)運(yùn)行優(yōu)化方法淺析
渦街氣體流量計(jì)在供熱管網(wǎng)中的應(yīng)用及效果分析
關(guān)于渦街氣體流量計(jì)在鉆井檢測系統(tǒng)方面的研究與應(yīng)用
關(guān)于氣體渦街流量計(jì)改進(jìn)方案和具體實(shí)施步驟
淺析渦街氣體流量計(jì)的相關(guān)系統(tǒng)及結(jié)構(gòu)與改進(jìn)措施
關(guān)于氣體渦街流量計(jì)堵塞故障的原因分析與解決措施
關(guān)于氣體渦街流量計(jì)卡澀問題分析及處理措施
渦街氣體流量計(jì)在工業(yè)生產(chǎn)中的使用與維護(hù)
1 引言
近些年來隨著供熱區(qū)域內(nèi)建筑面積的不斷增加,供熱管網(wǎng)的系統(tǒng)半徑不斷增大,在運(yùn)行期由于各種因素的影響,使得管網(wǎng)出現(xiàn)實(shí)際流量與設(shè)計(jì)流量不一致的現(xiàn)象,即出現(xiàn)了水力失調(diào)。雖然在設(shè)計(jì)初期會(huì)考慮到水力失調(diào)帶來的影響,由于水力計(jì)算步驟較為復(fù)雜,會(huì)選擇一些型號較大的設(shè)備,如加大水泵揚(yáng)程,提高水泵的運(yùn)行頻率來彌補(bǔ)系統(tǒng)水力失調(diào)。這種“大流量”的措施,放在以前的小規(guī)模系統(tǒng),舒適度要求較低、能耗要求也較低的供熱管網(wǎng)循環(huán)系統(tǒng)中,還可以用。但是現(xiàn)在來看,系統(tǒng)規(guī)模不斷擴(kuò)大,高舒適性、低耗能性等要求被提出,因此尋求新的解決水力失調(diào)的方法迫在眉睫。據(jù)不完全統(tǒng)計(jì),選用較大型號設(shè)備,會(huì)增加供熱設(shè)備的系統(tǒng)投資20%以上,同時(shí)熱能和電能也有不同程度的增加,耗熱能增加15%以上,浪費(fèi)電能30%以上。
管網(wǎng)水力失調(diào)不僅造成能源的大量浪費(fèi),而且造成了各采暖建筑物之間的室內(nèi)溫度偏差較大,冷熱不均。因此,必須采取有效措施解決供熱管網(wǎng)水力失調(diào)問題。筆者分析了某小區(qū)的供熱管網(wǎng)中存在的問題,利用加裝渦街氣體流量計(jì)方法解決管網(wǎng)水力失調(diào)的現(xiàn)象,以實(shí)現(xiàn)節(jié)能的目的。
2 小區(qū)供熱管網(wǎng)系統(tǒng)現(xiàn)狀
某小區(qū)住宅樓建設(shè)于1996年,建筑結(jié)構(gòu)為磚混建筑,建筑面積為54931m2,共30棟住宅樓。2017年繳費(fèi)739戶,總采暖面積為47141m2。換熱站位于小區(qū)中部,板式換熱機(jī)組設(shè)計(jì)換熱面積為50000m2,循環(huán)泵額定功率為30kW,流量為200m³/h,揚(yáng)程為32m。庭院管網(wǎng)共分為2個(gè)支狀供回水環(huán)路,該小區(qū)供熱管網(wǎng)見圖1所示。
管網(wǎng)平衡改造前,2017~2018 年*寒期循環(huán)泵頻率為45HZ,實(shí)測總供水量為189m³/h,供水溫度為 55.4℃,回水溫度為47.1℃;換熱站總供水壓力0.37MPa,回水壓力為 0.27MPa;采暖期電指標(biāo)為1.221kW·h/m2。管網(wǎng)近端末端部分用戶*寒期室溫實(shí)測數(shù)據(jù)詳見表1。基于以上數(shù)據(jù)可以看出,該小區(qū)庭院管網(wǎng)采用“大流量、小溫差”的供熱運(yùn)行方式,同時(shí)熱用戶室溫存在近熱遠(yuǎn)冷現(xiàn)象,管網(wǎng)處于水力失調(diào)狀態(tài),耗電指標(biāo)偏大,節(jié)能改造潛力巨大。
3 渦街氣體流量計(jì)的選用及調(diào)試方案
3.1 渦街氣體流量計(jì)的選用
該小區(qū)建造年代較早,供熱系統(tǒng)未采用熱計(jì)量,因此供熱系統(tǒng)屬于定流量系統(tǒng)。在定流量系統(tǒng)中,運(yùn)行過程流量不發(fā)生改變,因此只會(huì)出現(xiàn)靜態(tài)水力失調(diào)。只需要使用靜態(tài)渦街氣體流量計(jì)平衡系統(tǒng)阻力,達(dá)到靜態(tài)水力平衡即可。2018年夏季,我公司在小區(qū)每個(gè)樓單元前,回水干管上KPF靜態(tài)水力渦街氣體流量計(jì),共安裝88臺DN50渦街氣體流量計(jì)。為使系統(tǒng)在*大程度上達(dá)到靜態(tài)水力平衡,供熱前期即可用專用儀表進(jìn)行平衡調(diào)試。KPF靜態(tài)水力渦街氣體流量計(jì)有良好的流量調(diào)節(jié)特性及開度鎖定記憶裝置,配合使用專用智能儀表可測量單體建筑的供熱流量。該閥門可實(shí)現(xiàn)系統(tǒng)平衡后、總流量增減時(shí),各支路、各用戶的流量同比例增減,同步傳至每一個(gè)末端裝置,可有效避免流量失衡、各個(gè)環(huán)路相互干擾造成的熱量浪費(fèi)。
3.2 渦街氣體流量計(jì)調(diào)試方案
目前國內(nèi)平衡調(diào)節(jié)的主要方法有溫差法、比例法和CCR法。結(jié)合公司選擇使用KPF渦街氣體流量計(jì)的現(xiàn)狀,現(xiàn)采用KPF 綜合
調(diào)節(jié)法。該方法是計(jì)算出每棟單體建筑的理論循環(huán)流量,通過安裝KPF渦街氣體流量計(jì),利用其專用智能儀表標(biāo)定通過閥門的實(shí)際流量,調(diào)節(jié)閥門開度,使實(shí)際流量趨近于理論流量,實(shí)現(xiàn)水力工況平衡。
3.2.1 計(jì)算理論流量
考慮到該小區(qū)建造年代較早,建造圍護(hù)保溫性較差,查閱《城市熱網(wǎng)設(shè)計(jì)規(guī)范》后選用40W/m²的采暖熱指標(biāo)進(jìn)行計(jì)算。
根據(jù)公式(1)和公式(2)計(jì)算出每個(gè)單元理論設(shè)計(jì)流量。使用渦街氣體流量計(jì)專用智能儀表,通過調(diào)整渦街氣體流量計(jì)開度,使實(shí)際流量趨近于理論流量。
3.2.2 渦街氣體流量計(jì)調(diào)試
在庭院管網(wǎng)渦街氣體流量計(jì)調(diào)試中,采取“先近后遠(yuǎn)”的原則。*先利用專用智能儀表對管網(wǎng)近端渦街氣體流量計(jì)進(jìn)行流量調(diào)試,使其實(shí)際流量趨近于理論流量,這樣可以有效增大管網(wǎng)末端用戶的使用流量,防止末端流量不足的情況出現(xiàn);其次再依次進(jìn)行管網(wǎng)中端和末端渦街氣體流量計(jì)調(diào)節(jié),使整個(gè)環(huán)路水力工況達(dá)到平衡。在渦街氣體流量計(jì)調(diào)試過程中,需將每臺閥門的開度設(shè)定值、實(shí)際流量值等數(shù)據(jù)進(jìn)行記錄和整理,并撰寫渦街氣體流量計(jì)調(diào)試報(bào)告,以便為以后調(diào)試提供依據(jù)。部分渦街氣體流量計(jì)調(diào)試結(jié)果見表2所示。
4 管網(wǎng)平衡改造效果
4.1 管網(wǎng)不平衡率分析
將所有渦街氣體流量計(jì)調(diào)試后不平衡率做成圖片,如圖2所示。
圖2中橫坐標(biāo)代表渦街氣體流量計(jì)安裝單元數(shù),縱坐標(biāo)表示每個(gè)渦街氣體流量計(jì)不平衡率,當(dāng)未使用靜態(tài)水力渦街氣體流量計(jì)進(jìn)行調(diào)節(jié)前,水力不平衡率數(shù)據(jù)不集中,比較分散,*大能達(dá)到98%,從圖中還可以看出,調(diào)節(jié)前管網(wǎng)近端渦街氣體流量計(jì)不平衡率較大,而管網(wǎng)末端不平衡率均為負(fù)值,流量嚴(yán)重不足。說明調(diào)節(jié)前管網(wǎng)存在嚴(yán)重水力失調(diào)現(xiàn)象,近端流量大,遠(yuǎn)端流量不足。管網(wǎng)平衡改造后,水力不平衡率全部集中在8%以內(nèi),也就是說,整個(gè)管網(wǎng)基本處于水力平衡狀態(tài),即實(shí)際流量與理論流量相當(dāng)接近。另外從圖中可以看出,一些渦街氣體流量計(jì)不平衡率存在負(fù)值,說明該渦街氣體流量計(jì)的循環(huán)流量不足,原因可能為此閥盜用壓差不足,靜態(tài)渦街氣體流量計(jì)的加裝,無疑使得管路阻力增大了,因此必須考慮加大閥門開度。如果仍不能滿足循環(huán)流量,應(yīng)考慮該處靜態(tài)渦街氣體流量計(jì)安裝的必要性。
4.2 用戶室溫分析
我公司在該小區(qū)管網(wǎng)改造前,在不同單元不同樓層分別安裝100臺室溫采集器。渦街氣體流量計(jì)調(diào)前數(shù)據(jù)采集于2017~2018年供熱期,調(diào)后數(shù)據(jù)采集于2018~2019年供熱期。經(jīng)過兩個(gè)采暖期,共有96臺室溫采集器可以正常提供數(shù)據(jù)。數(shù)據(jù)分析結(jié)果見圖3所示。
圖3中的曲線 A和B供熱管網(wǎng)渦街氣體流量計(jì)調(diào)節(jié)前后的熱用戶室溫變化情況,橫坐標(biāo)表示室溫分布,縱坐標(biāo)表示熱用戶數(shù)量。從圖中可以看出,渦街氣體流量計(jì)調(diào)節(jié)前熱用戶室溫比較分散,既有室溫小于18℃的熱用戶,也有室溫大于24℃的熱用戶。熱用戶室溫“近熱遠(yuǎn)冷”,供熱管網(wǎng)存在水力不平衡現(xiàn)象。渦街氣體流量計(jì)調(diào)節(jié)后,有49戶用戶室溫在20℃~21℃之間,從圖中可以看出室溫分布范圍縮小,平均室溫降低,從而,不僅減少了供熱量,也大大提高了供熱品質(zhì)。一般來講,對采暖系統(tǒng),每增加 1℃平均室溫,能耗增多 5%~10%。采暖系統(tǒng)實(shí)現(xiàn)平衡后,常??梢越档推骄覝?℃~3℃。
4.3 換熱站內(nèi)數(shù)據(jù)分析
管網(wǎng)平衡改造后,2018~2019年*寒期換熱站內(nèi)供水溫度為55.4℃,回水溫度為 44.8℃,供回水溫差較上一采暖期增大2.3℃。換熱站總供水壓力0.37MPa,回水壓力為 0.25MPa,供回水壓差較上一采暖期增大0.02MPa。通過多次調(diào)試渦街氣體流量計(jì),已將循環(huán)泵頻率降至39HZ,采暖期電指標(biāo)為0.877kW·h/m²??梢姽芫W(wǎng)平衡改造后,節(jié)能效果明顯。
5 結(jié)論
通過對上述案例的分析,熟悉了靜態(tài)水力渦街氣體流量計(jì)的調(diào)試方法,通過對比平衡調(diào)試前后的不平衡率、室溫等數(shù)據(jù),得出管網(wǎng)平衡改造對改善管網(wǎng)水力失調(diào)的效果明顯,不僅節(jié)約能源,而且提高了管網(wǎng)末端熱用戶室溫,緩解了熱力公司與熱用戶之間的矛盾。
上一篇:電廠氣體渦街流量計(jì)運(yùn)行優(yōu)化方法淺析
下一篇:關(guān)于蒸汽渦街流量計(jì)堵塞故障的原因分析與解決措施